Arithmetic Bogomolov-gieseker’s Inequality

نویسنده

  • Atsushi Moriwaki
چکیده

Let f : X → Spec(Z) be an arithmetic variety of dimension d ≥ 2 and (H, k) an arithmetically ample Hermitian line bundle on X, that is, a Hermitian line bundle with the following properties: (1) H is f -ample. (2) The Chern form c1(H∞, k) gives a Kähler form on X∞. (3) For every irreducible horizontal subvariety Y (i.e. Y is flat over Spec(Z)), the height ĉ1( (H, k)|Y ) dim Y of Y is positive. Let (E, h) be a rank r vector bundle on X. In this paper, we will prove that if E∞ is semistable with respect to H∞ on each connected component of X∞, then { ĉ2(E, h)− r − 1 2r ĉ1(E, h) 2 } · ĉ1(H, k) d−2 ≥ 0. Moreover, if the equality of the above inequality holds, then E∞ is projectively flat and h is a weakly Einstein-Hermitian metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequality of Bogomolov-gieseker’s Type on Arithmetic Surfaces

Let K be an algebraic number field, OK the ring of integers of K, and f : X → Spec(OK) an arithmetic surface. Let (E, h) be a rank r Hermitian vector bundle on X such that E Q is semistable on the geometric generic fiber X Q of f . In this paper, we will prove an arithmetic analogy of Bogomolov-Gieseker’s inequality: ĉ2(E, h)− r − 1 2r ĉ1(E, h) 2 ≥ 0. Table of

متن کامل

A quantitative sharpening of Moriwaki’s arithmetic Bogomolov inequality

A. Moriwaki proved the following arithmetic analogue of the Bogomolov unstability theorem. If a torsion-free hermitian coherent sheaf on an arithmetic surface has negative discriminant then it admits an arithmetically destabilising subsheaf. In the geometric situation it is known that such a subsheaf can be found subject to an additional numerical constraint and here we prove the arithmetic ana...

متن کامل

Continuity of Volumes on Arithmetic Varieties

We introduce the volume function for C-hermitian invertible sheaves on an arithmetic variety as an analogue of the geometric volume function. The main result of this paper is the continuity of the arithmetic volume function. As a consequence, we have the arithmetic Hilbert-Samuel formula for a nef C-hermitian invertible sheaf. We also give another applications, for example, a generalized Hodge ...

متن کامل

Bogomolov Unstability on Arithmetic Surfaces

In this paper, we will consider an arithmetic analogue of Bogomolov unstability theorem, i.e. if (E, h) is a torsion free Hermitian sheaf on an arithmetic surface X and d̂eg ( (rkE − 1)ĉ1(E, h) − (2 rkE)ĉ2(E, h) ) > 0, then there is a non-zero saturated subsheaf F of E such that ĉ1(F, h|F )/rkF − ĉ1(E, h)/rkE lies in the positive cone of X. 0. Introduction In [Bo], Bogomolov proved unstability t...

متن کامل

Surfaces Violating Bogomolov-miyaoka-yau in Positive Characteristic

The Bogomolov-Miyaoka-Yau inequality asserts that the Chern numbers of a surface X of general type in characteristic 0 satisfy the inequality c1 ≤ 3c2, a consequence of which is K2 X χ(OX ) ≤ 9. This inequality fails in characteristic p, and here we produce infinite families of counterexamples for large p. Our method parallels a construction of Hirzebruch, and relies on a construction of abelia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993